89 research outputs found

    Laser Doppler velocimeter measurements in a turbine stator cascade facility

    Get PDF
    A laser Doppler velocimeter (LDV) developed for mapping the flow velocity downstream from a 32-inch diameter annular cascade of turbine stator vanes in described. The LDV measurements were taken in a plane located approximately 0.5 inch downstream of the trailing edges of the vanes. Two components of the mean velocity (axial and circumferential) were measured. The flow velocities were in the high subsonic range. The LDV optics are of the dual scatter type with off-axis collection of the scattered light. The electronics system is based on the measurement of the time interval corresponding to eight periods of the Doppler signal and has a range of 10 to 80 MHz. The LDV measurements are compared with previous measurements made with a pressure probe

    Application of laser anemometry in turbine engine research

    Get PDF
    The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work

    Filter induced errors in laser anemometer measurements using counter processors

    Get PDF
    Simulations of laser Doppler anemometer (LDA) systems have focused primarily on noise studies or biasing errors. Another possible source of error is the choice of filter types and filter cutoff frequencies. Before it is applied to the counter portion of the signal processor, a Doppler burst is filtered to remove the pedestal and to reduce noise in the frequency bands outside the region in which the signal occurs. Filtering, however, introduces errors into the measurement of the frequency of the input signal which leads to inaccurate results. Errors caused by signal filtering in an LDA counter-processor data acquisition system are evaluated and filters for a specific application which will reduce these errors are chosen

    Advanced high temperature instrument for hot section research applications

    Get PDF
    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered

    Velocity lag of solid particles in oscillating gases and in gases passing through normal shock waves

    Get PDF
    The velocity lag of micrometer size spherical particles is theoretically determined for gas particle mixtures passing through a stationary normal shock wave and also for particles embedded in an oscillating gas flow. The particle sizes and densities chosen are those considered important for laser Doppler velocimeter applications. The governing equations for each flow system are formulated. The deviation from Stokes flow caused by inertial, compressibility, and rarefaction effects is accounted for in both flow systems by use of an empirical drag coefficient. Graphical results are presented which characterize particle tracking as a function of system parameters

    Comparison of laser anemometer measurements and theory in an annular turbine cascade with experimental accuracy determined by parameter estimation

    Get PDF
    Experimental measurements of the velocity components in the blade to blade (axial tangential) plane were obtained with an axial flow turbine stator passage and were compared with calculations from three turbomachinery computer programs. The theoretical results were calculated from a quasi three dimensional inviscid code, a three dimensional inviscid code, and a three dimensional viscous code. Parameter estimation techniques and a particle dynamics calculation were used to assess the accuracy of the laser measurements, which allow a rational basis for comparison of the experimenal and theoretical results. The general agreement of the experimental data with the results from the two inviscid computer codes indicates the usefulness of these calculation procedures for turbomachinery blading. The comparison with the viscous code, while generally reasonable, was not as good as for the inviscid codes

    Three component velocity measurements using Fabry-Perot interferometer

    Get PDF
    A method for measuring the three components of mean flow velocity using a backscatter optical system based on a confocal Fabry-Perot interferometer is described. An analysis of the expected uncertainties in the velocity component measurements is presented along with experimental data taken in a free jet at two flow velocities (100 and 300 m/s)

    Laser anemometer using a Fabry-Perot interferometer for measuring mean velocity and turbulence intensity along the optical axis in turbomachinery

    Get PDF
    A technique for measuring a small optical axis velocity component in a flow with a large transverse velocity component is presented. Experimental results are given for a subsonic free jet operating in a laboratory environment, and for a 0.508 meter diameter turbine stator cascade. Satisfactory operation of the instrument was demonstrated in the stator cascade facility with an ambient acoustic noise level during operation of about 105 dB. In addition, the turbulence intensity measured with the interferometer was consistent with previous measurements taken with a fringe type laser anemometer

    Theory of Thomson scattering from a weakly ionized plasma

    Get PDF
    Theory of Thomson scattering from weakly ionized plasma extended to include effects of unequal electron and ion temperatures, constant magnetic field, and electron drif

    Laser Doppler, velocimeter system for turbine stator cascade studies and analysis of statistical biasing errors

    Get PDF
    A laser Doppler velocimeter (LDV) built for use in the Lewis Research Center's turbine stator cascade facilities is described. The signal processing and self contained data processing are based on a computing counter. A procedure is given for mode matching the laser to the probe volume. An analysis is presented of biasing errors that were observed in turbulent flow when the mean flow was not normal to the fringes
    corecore